Exercise 20

Compute the left and right Riemann sums- L_{4} and R_{4}, respectively-for $f(x)=(2-|x|)$ on $[-2,2]$. Compute their average value and compare it with the area under the graph of f.

Solution

For $n=4$, the left Riemann sum is taken from 0 to 3 .

$$
\begin{aligned}
\int_{-2}^{2}(2-|x|) d x \approx \sum_{i=0}^{3}\left(2-\left|x_{i}\right|\right) \Delta x & =\sum_{i=0}^{3}(2-|-2+i \Delta x|) \Delta x \\
& =\sum_{i=0}^{3}\left\{2-\left|-2+i\left[\frac{2-(-2)}{4}\right]\right|\right\}\left[\frac{2-(-2)}{4}\right] \\
& =\sum_{i=0}^{3}[2-|-2+i(1)|](1) \\
& =\sum_{i=0}^{3}(2-|-2+i|) \\
& =(2-|-2+0|)+(2-|-2+1|)+(2-|-2+2|)+(2-|-2+3|) \\
& =8-|-2|-|-1|-|0|-|1| \\
& =8-2-1-0-1 \\
& =4
\end{aligned}
$$

For $n=4$, the right Riemann sum is taken from 1 to 4 .

$$
\begin{aligned}
\int_{-2}^{2}(2-|x|) d x \approx \sum_{i=1}^{4}\left(2-\left|x_{i}\right|\right) \Delta x & =\sum_{i=1}^{4}(2-|-2+i \Delta x|) \Delta x \\
& =\sum_{i=1}^{4}\left\{2-\left|-2+i\left[\frac{2-(-2)}{4}\right]\right|\right\}\left[\frac{2-(-2)}{4}\right] \\
& =\sum_{i=1}^{4}[2-|-2+i(1)|](1) \\
& =\sum_{i=1}^{4}(2-|-2+i|) \\
& =(2-|-2+1|)+(2-|-2+2|)+(2-|-2+3|)+(2-|-2+4|) \\
& =8-|-1|-|0|-|1|-|2| \\
& =8-1-0-1-2 \\
& =4
\end{aligned}
$$

The average of the two Riemann sums is

$$
\frac{2+2}{2}=2 .
$$

Now plot the graph of $f(x)=2-|x|$ versus x.

The area under the graph is the sum of two triangles with base 2 and height 2 .

$$
A=\frac{1}{2}(2)(2)+\frac{1}{2}(2)(2)=2+2=4
$$

